Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits.
نویسندگان
چکیده
A high incidence of seizures occurs during the neonatal period when immature networks are hyperexcitable and susceptible to hypersyncrhonous activity. During development, γ-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in adults, typically excites neurons due to high expression of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1). NKCC1 facilitates seizures because it renders GABA activity excitatory through intracellular Cl(-) accumulation, while blocking NKCC1 with bumetanide suppresses seizures. Bumetanide is currently being tested in clinical trials for treatment of neonatal seizures. By blocking NKCC1 with bumetanide during cortical development, we found a critical period for the development of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate synapses. Disruption of GABA signaling during this window resulted in permanent decreases in excitatory synaptic transmission and sensorimotor gating deficits, a common feature in schizophrenia. Our study identifies an essential role for GABA-mediated depolarization in regulating the balance between cortical excitation and inhibition during a critical period and suggests a cautionary approach for using bumetanide in treating neonatal seizures.
منابع مشابه
GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation.
The development of a balance between excitatory and inhibitory synapses is a critical process in the generation and maturation of functional circuits. Accumulating evidence suggests that neuronal activity plays an important role in achieving such a balance in the developing cortex, but the mechanism that regulates this process is unknown. During development, GABA, the primary inhibitory neurotr...
متن کاملBumetanide in Children and Adolescents with Autism Spectrum Disorder
Introduction: Autism Spectrum Disorder (ASD) is characterized by several impairments in communications and social interactions as well as restricted interests or stereotyped behaviors. Interventions applied for this disorder are based on multi-modal approaches, including pharmacotherapy. No cure or medication has been introduced so far; therefore, there were studies investigating several drugs ...
متن کاملAlternations of NMDA and GABAB Receptor Function in Development: A Potential Animal Model of Schizophrenia
Schizophrenia is a debilitating mental disorder that affects up to 3% of the world population. The behavioral symptoms are categorized into positive and negative symptoms, which appear during late adolescence/early adulthood. Unfortunately, the underlying cellular and molecular mechanisms of the disease are poorly understood. Several hypotheses exist to explain mechanisms contributing to these ...
متن کاملGABAergic Signaling as Therapeutic Target for Autism Spectrum Disorders
γ-Aminobutyric acid (GABA), the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chl...
متن کاملCl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1.
GABA is the principal inhibitory neurotransmitter in the mature brain, but during early postnatal development the elevated [Cl(-)](i) in immature neocortical neurones causes GABA(A) receptor activation to be depolarizing. The molecular mechanisms underlying this intracellular Cl(-) accumulation remain controversial. Therefore, the GABA reversal potential (E(GABA)) or [Cl(-)](i) in early postnat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2011